Lec 1: Nilpotent orbits

1) Nilp. orbits & \(\mathfrak{g}_0 \)-tuples
2) Applications of \(\mathfrak{g}_0 \)-tuples
3) Symplectic singulars

4) Nilp. elts & orbits: count simple \(G/U \) (2 @\$ Lie(G)

Thm: Defn: \(x \in g \) is nilp. if follow equiv condns hold

1) \(0 \in G_0 \) (Zassenhaus topology)
2) \(p(x) \) is nilp. \(\forall x \in g \) \(\Rightarrow \) rep. \(\phi: g \rightarrow g \) (irred)
3) \(\phi \) for some faithful

E.g. if \(g \) is classical, then nilp. elt \(\Rightarrow \) nilp. centralizing

Defn: nilp. orbit: \(O := G_x, x \in g, x \) nilp.

5) \(\mathfrak{g}_0 \)-tuples: Defn: \(\mathfrak{g}_0 \)-tuple in \(g \) is \((e, h, f) \) w. \([h, e] = 2e, [h, f] = 2f, h = h \) homot. \(\phi: \mathfrak{g}_0 \rightarrow g \)

Thm (Jacobson-Morozov existence): \(\forall \) nilp. \(x \in g \exists \mathfrak{g}_0 \)-tuple \((e, h, f) \)

Thm (Kostant, uniqueness): \((e, h, f), (e', h', f') \) \(\mathfrak{g}_0 \)-tuples \(\Rightarrow \exists \lambda \in g \) \(\forall g \in Z_2(e) \)

Cor: nilp. orbits \(\leftrightarrow \) \# \(\mathfrak{g}_0 \rightarrow \mathfrak{g}/G \) (**)

Morally, it's easier to understand the r.h.s. \(\mathfrak{g}_0 \)-tuple overall is a crucial tool to study various questions about nilpotent orbits

6) Application: classification of nilp. orbits:

\(g = \mathfrak{sl}_n \): (**): \(n \)-dim. \(\mathfrak{g}_0 \)-tuples \(\rightarrow \) Young diagrams (so nilp. orbits are classified by Young diagrams - by Jordan type)

\(g = \mathfrak{so}_n \): \(G = O_n \)-disconnected, compact group is \(SU(n) \) or \(g = \mathfrak{sp}_n \) \(\cdot \) \(n \)-dim. orth/sympl. \(\mathfrak{g}_0 \)-tuples \(\rightarrow \) sympl. 150a (if there's an iso can choose it orthog.

Compare to the fact that up to conj. there's a single orthog/sympl form on \(\mathfrak{g}_0 \):

So our question is: when is \(\mathfrak{g}_0 \)-rep. orthog./sympl.

\(\Rightarrow V \)-vector space \(\Rightarrow \) \(V \otimes V^* \) have n.n.c. orth & sympl. form
\[E_{\frac{1}{2}} \text{-rep V is orthog if } \dim V \text{ odd, sympl if } \dim V \text{ even } \Rightarrow \text{self-dual} \]

Result: \(V \) is \(E_{\frac{1}{2}} \)-rep; \# even/odd dim E-rep appears in \(V \) \# even mult

\[\Leftrightarrow \text{V is orthog/sympl} \]

Conclusion: M. If \(O^n \)-orbits in \(S\mathfrak{g}_n / S\mathfrak{p}_n \)-orbits in \(S\mathfrak{g}_n \leftrightarrow \text{Young diagr.} \), where even/odd parts have even mult.

Not'n: \(x^n + n \mapsto O_x \subseteq g \)

Rem: \(O^n \)-orbit \(O_x \) splits into \(2 \) \(S\mathfrak{g}_2 \)-orbits \(\Leftrightarrow \text{all parts of } x \text{ are even} \).

Otherwise, \(O_x \) is a single \(S\mathfrak{g}_2 \)-orbit.

Gen'l Thm: \# imp. orbits in \(g \leq \infty \)

2.2) Resol'n of sing's for \(\mathcal{O} \)

Not'n: \(g_j := \{ x \in g \mid [h, x] = 0 \} \Rightarrow g_j = \bigoplus g_j \), Lie algebra grading

\(g_{\mathfrak{g}_2} = g_{2,0} \), parabolic subalgebra \(\Rightarrow g_{\mathfrak{g}_2} \leq g_2, \ g_{\mathfrak{g}_2} \cong \mathfrak{g}_2 \).

\(g \times g_{\mathfrak{g}_2} = g \times g_{2,2} \rightarrow (g, x) \sim (g \cdot h, x), \) be \(g_{\mathfrak{g}_2} \), \([g, x] = \text{equiv. class of } (g, x) \)

\(\tau : [g, x] \mapsto g_x \) (generalized Springer morphism)

Prop. im \(\tau \subset \mathcal{O} \) \& \(\tau : g \times g_{\mathfrak{g}_2} \rightarrow \mathcal{O} \) is resol'n of sing's

Proof: \(\tau \) is project.

\[g \times g_{\mathfrak{g}_2} \rightarrow g \times g_{\mathfrak{g}_2} \rightarrow g \times g_{\mathfrak{g}_2} \rightarrow g_2 \]

\[\text{part flag variety} \]

\[\text{- Lie algebrae are the same } g_{\mathfrak{g}_2} (e) = g \ (e) \text{ - from rep'n theory of } \mathcal{O} \]

\(N \leq Z^e (e) \text{ con comm subgroup w. Lie(N) = g(e)} \text{ & } g_{\mathfrak{g}_2} \text{ - normal subgp} \)

Q: \(Z^e (e) \cap C_0 = Z^e (e, h) = Z^e (e, f) \text{ reductive} \)

\((x) \leq Z^e (e) = Q \times N \leq Z^e (e) h = Nh \leq e \)

3.1) Simple sing's \(X \) normal alg. vary, \((X^{alg}) \) sympl. vary

Def'n (Beauville '00) \(X \) has simple sing's if \(\exists (\Rightarrow X) \text{ resol'n of sing's} \)
\(\rho : X \rightarrow X \) s.t. \(\rho^*(w) \) extends from \(\overline{p}''(X^{reg}) \) to \(X \) (may become degenerate)

Remark: Simple sing'ys is Cohen-Macaulay, Gorenstein

32) Example: minim of \(\overline{O} \): \(O \subset \mathfrak{g}^* \). Orbit (for any alg. grp C) is symplectic.

\(T_a \Theta = \mathfrak{g}_a a, \mathfrak{g}_a (x, y, a) = \langle x, y \rangle \) Killing-Kostant form

\(w \) is C-inv & sympl \(\Rightarrow \dim \Theta \) Even

\(\#\) sing'ys \(\Theta \implies \Theta \approx \mathfrak{g}_a \) \(\Rightarrow \Theta \) is symplectic

\(\#\) nilp. orits \(\leq \infty \) \(\Rightarrow \) coding \(\Theta \not\approx \mathfrak{g}_a \), \(\Theta \) may fail to be normal.

\(X = \text{Spec } C[\Theta] \) is norm of \(\Theta \)

Thm (anyushnev) \(X \rightarrow \text{Spec } C[\Theta] \) has sympl. sing's

Proof: \(X = \mathfrak{g}_a \mathfrak{g}_a, \mathfrak{g}_a \rightarrow \Theta \)

\(\overline{\mathfrak{g}} \) is enough to show \(\mathfrak{g} \) exits from \(\mathfrak{g} \subset X \) to \(X \)

\(T_{[x]} \mathfrak{g} \mathfrak{g}_{[y]} = \mathfrak{g}_{[x]} \mathfrak{g}_{[y]} \mathfrak{g}_{[z]} \)

Exerc: \(\exists \mathfrak{g} \)-inv 2-form \(\omega \) on \(X \) \(\omega |_{\mathfrak{g}_{[x]}(y_{\alpha} + y_{\beta}, z_{\alpha} + z_{\beta})} = \) \((y_{\alpha} + y_{\beta}, z_{\alpha} + z_{\beta}) - (x_{\alpha}, y_{\alpha}). \)\)

\(\omega \) is non-deg \(\Leftrightarrow \mathfrak{g}_{[y]} = 0 \)

Goal of this course: study deformations of \(C[\Theta] \) for nilp. orits \(\Theta \) (if some covers).