SLODOWY SLICES

1. Jacobson-Morozov Theorem

This theorem is a key tool to study nilpotent elements and nilpotent orbits in a semisimple Lie algebra.

Let G be a connected semisimple algebraic group over \mathbb{C} , \mathfrak{g} its Lie algebra, and $e \in \mathfrak{g}$ be a nilpotent element. Recall that e is called nilpotent if one of the following equivalent conditions hold:

- (1) e is represented by a nilpotent operator in some faithful finite dimensional representation of \mathfrak{g} .
- (2) e is represented by a nilpotent operator in every finite dimensional representation of \mathfrak{g} .
- (3) We have f(e) = f(0) for any G-invariant polynomial f on \mathfrak{g} .
- (4) $0 \in \overline{Ge}$.

Theorem 1.1. Every nilpotent element $e \in \mathfrak{g}$ can be included into an \mathfrak{sl}_2 -triple: there are elements $h, f \in \mathfrak{g}$ with [h, e] = 2e, [h, f] = -2f, [e, f] = h.

In fact, we have the following results of Dynkin and Kostant which make the theorem more precise.

Theorem 1.2. Let (e, h, f), (e, h', f') be two \mathfrak{sl}_2 -triples. Then there is an element $g \in G$ centralizing e such that gh = h', gf = f'.

Theorem 1.3. Let (e, h, f), (e', h, f') be two \mathfrak{sl}_2 -triples. Then there is an element $g \in G$ centralizing h such that ge = e', gf = f'.

Problem 1. Prove Theorem 1.1 in the case of $\mathfrak{g} = \mathfrak{sl}_n$.

Problem 2. Prove Theorem 1.1 for the general **g**. You may use the following strategy:

1) Check that $x \in \mathfrak{g}$ lies in the image of $\operatorname{ad} e$ if and only if x is orthogonal (w.r.t. the Killing form) to the centralizer of e.

2) Prove Theorem 1.1 in the case when the centralizer of e consists of nilpotent elements.3) Prove Theorem 1.1 in the general case.

Let $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}(i)$ be the grading by eigenvalues of ad h.

Problem 2'. For i > 0, let x_i be an element of $\mathfrak{g}(i)$ such that $[e, x_i] = 0$. Set $x := \sum_{i>0} x_i$. Prove that there is an element g in the unipotent radical of $Z_G(e)$ that maps h to h + x. Deduce Theorem 1.2.

Problem 2". Show that $Z_G(h)$ acts on $\mathfrak{g}(2)$ with an open orbit. Deduce Theorem 1.3. The next three problems concern applications of the theorems.

Problem 3. Show that the nilpotent orbits in \mathfrak{g} are in one-to-one correspondence with the *G*-conjugacy classes of Lie algebra homomorphisms $\mathfrak{sl}_2 \to \mathfrak{g}$.

Problem 4. Show that the number of nilpotent orbits in \mathfrak{g} is finite.

Problem 5. Describe the nilpotent orbits for O(n) and Sp(2n). How is the case of SO(n) different from that of O(n)?

SLODOWY SLICES

2. Slodowy slices

Yet one more application of the Jacobson-Morozov theorem is a construction of slices to nilpotent orbits. Let e, h, f be an \mathfrak{sl}_2 -triple. Set $S := e + \ker \operatorname{ad} f$. This is a so called *Slodowy slice*.

Problem 6. Show that the intersection of S and Ge at e is transversal.

Define the action of \mathbb{C}^{\times} on \mathfrak{g} by $t \cdot x = t^{2-i}x$ for $x \in \mathfrak{g}(i)$.

Problem 7. Show that this action preserves S and contracts it to the point e.

Problem 8. Show that $S \cap Ge = \{e\}$. Moreover, show that $T_sS + T_sGs = \mathfrak{g}$ for any $s \in S$.